Reducing Interpolation Artifacts for Mutual Information Based Image Registration
نویسندگان
چکیده
Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme.
منابع مشابه
Artifacts reduction in mutual information-based image registration using prior information
Mutual information (MI) is currently the most popular match metric in handling the registration problem for multi modality images. However, interpolation artifacts impose deteriorating effects to the accuracy and robustness of MI-based methods. This paper analyzes the generation mechanism of the artifacts inherent in partial volume interpolation (PVI) and shows that the mutual information resul...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملInterpolation Artefact Reduction by Statistical Approach in Mutual Information-based Image Registration
Mutual information-based image registration has been verified to be quite effective in many clinical applications. However, when calculating the mutual information between two working images, we need to estimate the grey values of the transformed image by interpolation on the reference image, which introduces regular artefacts in the registration function. In this paper, we analyse the underlin...
متن کاملPerformance of mutual information similarity measure for registration of multitemporal remote sensing images
Multi-Temporal Remote Sensing Images Hua-mei Chen Department of Computer Science and Engineering University of Texas at Arlington, Arlington, TX 76019, USA Pramod K. Varshney and Manoj K. Arora Department of Electrical Engineering and Computer Science Syracuse University, Syracuse, NY 13244 Abstract Accurate registration of multi-temporal remote sensing images is essential for various change de...
متن کاملRegistration of Multimodal Brain Images: Some Experimental Results
Joint histogram of two images is required to uniquely determine the mutual information between the two images. It has been pointed out that, under certain conditions, existing joint histogram estimation algorithms like partial volume interpolation (PVI) and linear interpolation may result in different types of artifact patterns in the MI based registration function by introducing spurious maxim...
متن کامل